

Documentation for Pylux

User Guide

	Introduction
	Synopsis

	Interface

	Basic Concepts

	Getting Started
	Invoking

	File Management

	The CLI

	Syntax

	Using Metadata

	Using Fixtures
	Creating Fixtures

	Displaying Fixtures

	Setting Attributes

	Cloning Fixtures

	Assigning DMX Addresses to Fixtures

	Importing Data

	Generating Reports

	Generating Plots
	Customising the Plot

Command Reference

	Base Reference
	Cue Commands

	File Commands

	Filter Commands

	Fixture Commands

	Group Commands

	Metadata Commands

	Registry Commands

Developer Documentation

	Developer Introduction
	General Structure

	Interface Specification
	Launching

	Structure

	Sending Commands

	Receiving Feedback and Output

	Format of Text Output

	Adding Object Types

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Synopsis

Pylux is a program designed for the creation and management of documentation
for entertainment purposes. Its primary purpose is the creation of
documentation for theatrical lighting scenarios.

Pylux can be easily extended to encompass additional functionality and the
default installation contains the necessary modules to create documentation
in plaintext format of any style using simple templating tools.

Interface

Everything you would need to do can be done through submitting commands on
the command line. In the current implementation, this is done through an
interactive prompt, although could be extended to incorporate a GUI, non-interactive
CLI or even a web interface.

Basic Concepts

Pylux is centered around a JSON file which contains all the information about
your show. The JSON file is fundamentally unstructured and consists of an
unordered list of fundamental objects, which will take one of the types below.

	Fixture

	A single physical lighting fixture, such as a PAR can. A fixture will
further contain a list of DMX functions, which act in the same way as
the other fundamental objects, but will never appear outside of a fixture
object in the show file itself.

	Registry

	A mapping of functions to addresses within a single DMX universe.

	Cues

	A snapshot of the levels of some functions.

	Groups

	A list of fixtures in a certain order.

These data types are referred to often in the remainder of this guide.

Each of these object types will have an arbitrary number of key/value pairs
associated with them. These pairs may contain any type of information, but
there are four which are common to all object types:

	type

	The type of object. For example metadata or fixture.

	uuid

	A universally unique identifier pointing to this object.

	ref

	A human-readable identifier unique to this object within others of its
type. This will be the number which is used to call and pass this object
to commands.

	label

	A non-required field which acts as the fallback when no other information
about the object is available.

Getting Started

Invoking

Launch the program by running pylux as a module. Alternatively, you
can add an entry point into your system PATH.

	-h

	Print the usage message then exit

	-v

	Print the version number then exit

	-f FILE

	Load FILE as the current show file

File Management

In addition to loading a file whlist launching, you can also load a
file by issuing the File Open path command once open, which will
discard the current file buffer and load the file at path. When you need
to save the file, run File Write path.

If you do not have an existing file, you can begin working straight away.
If no file is specified on startup, the program will load autosave.json.

The CLI

The CLI is the default and only included interface to the command interpreter.
It is a curses-style interface which will completely take over your terminal window.
The screen is split into four areas: a large pane on the left called the Fixed Output Pane,
a large pane on the right called the Dynamic Output Pane, a single line at the bottom
which is your command-line entry and a line above the command line which displays
command history and feedback.

The contents of the Dynamic Output Pane will change based on the commands you run and
will display any output the interpreter sends from commands.

The contents of the Fixed Output Pane are dependent on the context you are in. The
current context is given by the word preceding the command line. By default this is
Fixture. In the Fixture context, the Fixed Output Pane will display a list of all
fixtures in your show file. Similarly for cues, groups, etc. There is a special context,
All, which will display all items in your show file.

You can change the context by typing the name of the new context twice and pressing enter.
For example to change to the cue context type Cue Cue. This is a function specific to
the CLI and is not sent to the interpreter so is not considered a ‘command’ as such.

You will notice as you type that many keys do not function as normal. That is because
there is a substantial autofill provision. For example, pressing the key x will
type Fixture in the command line for you, to save time typing out the entire word.
You can enable and disable autofill by pressing Ctrl+A. This will change the letter
preceding the command line from an A (indicating autofill is active) to an X.

Syntax

Most commands take the form object refs action params where:

	object is the type of object you will be acting on, for example Fixture.

	refs is a single or list of references to these objects, for example 1.

	action is what you are doing to this object, for example CopyTo.

	params is any further information the command requires. The number of parameters will vary from command to command. For example, CopyTo takes one parameter: the destination references.

References can be a single number:

1

A range:

1>10

A list of numbers:

1,8,11,15

Any combination of the two:

1,3>10,13,15

A special character meaning all:

*

A filtered list of numbers or ranges (this means apply filter 1 to the range in brackets):

1[2>8,10]

A combination of filtered and unfiltered ranges:

1[2>8],11,12,2[22,26,29>40]

You can also apply a filter to the all character:

1[*]

Or combine a filter of everything with unfiltered references too (this means show everything which
matches filter 1, and also show 8 and 9, regardless of whether they meet the requirements of filter 1
or not:

1[*],8,9

Using Metadata

Metadata is a special form of data which exists outside of the normal object
structure. There are no references. It is simply a list of key/value pairs used
to store extra data about a file. There is only one command:

Metadata Set title Romeo & Juliet

This gives the tag with key ‘title’ the value ‘Romeo & Juliet’. If you want to delete
the tag, just run:

Metadata Set title

That’s it.

Using Fixtures

Fixtures are an important part of a plot. They represent a single
physical lighting instrument and are used to create plot drawings and
hanging documentation.

Fixtures contain quite a bit more information than metadata: they consist of
a data dictionary and a DMX functions list. The data dictionary is simply
a key/value list of information about the fixture. The DMX functions list
is actually a subvalue of the dictionary and describes how the fixture can be
controlled by the DMX protocol.

Creating Fixtures

Because of the complexity of fixtures, especially those that contain DMX
functions, it is not recommended to create them from scratch. Instead,
create one from a template then edit from there:

Fixture 1 CreateFrom Generic/Parcan

This creates a new fixture from the Generic/Parcan template. This is an
included fixture template with Pylux. 1 is the reference given to this new fixture.

Displaying Fixtures

You will have seen the fixture appear in the Fixed Output Pane if you are in the
Fixture context. You can also show the fixture in the Dynamic Output Pane by running:

Fixture 1 Display

If you want a bit more information on the fixture, such as additional data tags and
DMX functions, you can run:

Fixture 1 About

Setting Attributes

By default fixtures do not have names, but it may be useful to give them a
label so they are easily identifiable when you have many fixtures of the same
type:

Fixture 1 Set label SL pipe end

Now you will see your fixture has the label SL pipe end, when using both Display and About.

In place of label, you may put any arbitrary tag you like, such as gel, posX etc.
For a list of suggested and reserved attributes, see the appendicies.

Cloning Fixtures

Say we have five more PAR cans that we wish to add, we can use the cloning
command to quickly add these between references 2 and 6:

Fixture 1 CopyTo 2>6

Notice that whenever you supply a unique reference, you can usually supply a
range of references to run the command in bulk.

Get information about all of these by running:

Fixture * About

Assigning DMX Addresses to Fixtures

The data patching a fixture function to a DMX address exists in Registry
objects, although it is a fixture command which is used to assign these
addresses:

Fixture 1 Patch 0 0

This will patch your fixture in universe 0 at address 0. Of course address 0
does not exist, 0 in this case means, the next available set of addresses where
this fixture will fit. This is obviously 1 in this case.

The program will automatically create the required registry object for you.

Importing Data

You can import data from an Eos ASCII export:

File ImportAscii export.asc eos_patch

This imports the Eos patch from the export.asc file. In place of eos_patch, you
can also specify cues or groups. Make sure you import the patch before
groups or cues, otherwise none of the fixtures you reference in these cues or groups
will exist yet.

Generating Reports

Pylux can generate all sorts of plaintext reports for display or printing.
All reports are made using a Jinja 2 template. Jinja is a templating
software that allows you to create any sort of plaintext template then
populate it with the contents of the effects plot.

Create a report from an existing template:

Report Create fixturelist.html

This creates a report from the fixturelist.html template and stores it in
memory. Save it to disk by running:

Report Write output.html

Generating Plots

If you have SVG image files for your fixtures, you can create a 2D plot of
your rig. You need to have given all fixtures you wish to plot in the rig,
at minimum a posX and posY value. If you want them to be orientated correctly,
you will also need to give them either a rotation value or focusX and focusY values.

Create a new plot and save it in memory:

Plot Create

Write the plot to disk:

Plot Write output.svg

There are many many options you can change when creating a plot. You can see what they
are by running:

Plot About

This will display the options in your Dynamic Output Pane. To change any of these, for
example scaling, run:

Plot Set scale 25

You can also change the defaults in the program configuration file.

Customising the Plot

The base defaults given in the configuration are optimised for the closest output to the
USITT standard possible. However, you can change these to suit your particular plot better.
You may find that some changes to these options require simultaneous changes to the default
stylesheet in order to maintain a cohesive look.

For boolean options, any boolean equivalent is acceptable, for example true, yes, 1, and on are all
acceptable in place of True.

Page Layout

	paper-size

	The size of paper to fit the plot to. Accepted are ISO A[0-4]. Note, changing this option
should be preferred to just scaling the entire plot to a different size after it has been converted
to PDF. The paper-size attribute will ensure that line weights and font sizes are kept to
standard, and also dynamically resizes the title block based on the paper size. Default A3.

	orientation

	Specify landscape or portrait. Default landscape.

	margin

	Leave spacing between the edge of the paper and print area. No fixtures will be drawn outside
this margin. Some other components may extend beyond the margin if they are set to do so.
Measured in millimeters. Default 10.

	page-border

	Draw a black border around the page. This is drawn inside the margin. Default True.

Drawing Options

	scale

	The scale at which to produce the plot. Only metric scales are acceptable, although this
number can be a decimal. Default 50.

	plaster-line-padding

	By default, the centre of the plot area is the intersection of the plaster line and centre
line. You can however offset the centre vertically through this option. Positive numbers will
increase the area visible in the positive y direction. i.e. the plaster line will be
moved down in the output. Measured in unscaled metres. Default 0.

	background-image

	A path to an vector file which is placed on the drawing surface before anything else. This
image must be in the prescribed format and centred about the plaster line / centre line
intersection. Default plot_background.svg.

	line-weight-light, line-weight-medium, line-weight-heavy

	The plot is based on a three-weight drawing, as prescribed by the USITT standard. Refer
to section 6.18 of the standard for which each weight is used for. In addition to this,
line-weight-light is also used for any general components. Measured in millimeters.
Defaults 0.4, 0.6, 0.8

	style-source

	A path to an external CSS file, which defines necessary external styling for both the SVG
file itself and the foreignObject HTML injections inside it. Primarily used for text
formatting. A default style file is provided with the installation, which can be freely
edited by the user. Default style.css.

	centre-line-dasharray, plaster-line-dasharray

	An SVG dasharray specification to use for the centre and plaster lines. The default is designed to
closely match the USITT specification. Defaults 4, 0.5, 1, 1.5, 3, 0.7.

	centre-line-extend, plaster-line-extend

	When set to True, the centre and plaster lines will printed beyond the page border into
the margin, to the extent of the actual paper. Defaults False.

	draw-structures

	When enabled, correctly formatted and tagged structure objects in the file will be
rendered onto the plot. Default True.

Fixture Icon Options

	fallback-symbol

	Plot will attempt to draw every fixture with position values, even if they do not have a
symbol. Specify here the symbol that should be used in the event that the fixture does
not have a symbol tag. Default Generic/Parcan.

	colour-fixtures

	If set to True, fixtures will be coloured in according to their gel tag. Any gels which
can’t be converted to RGB, or any fixtures without a gel tag, will be displayed in the
default of white. This colouring is applied to all parts of the fixture icon with the
outer class, whilst white is applied to all parts with the inner class.
Default False.

	fallback-handle-north, fallback-handle-south, fallback-handle-east, fallback-handle-west

	If fixture symbols are being used that do not contain correctly tagged handles, these
fallback handles will be used in their place. Primarily used for latching additional data to
icons and calculating icon size. Measured in unscaled millimetres.
Defaults 0, -200, 0, 200, 150, 0, -150, 0

Additional Component Settings

	show-channel-number, show-circuit-number, show-dimmer-number

	These can be toggled in any combination to specify whether the fixture’s channel, circuit
and dimmer numbers should be displayed next to the fixture icon in the USITT format. Refer
to section 6.14.1 of the standard to see what this is. The additional information will only
be displayed if it appears in the fixture in circuit or dimmer tags. The fixture
reference is always assumed to be the channel number so will always be printed if this option
is enabled. Default True.

	channel-notation-radius

	Each of the channel, circuit and dimmer numbers are printed in a box as given by the
standard. Use this option to change the nominal size of the boxes. Measured in
millimetres. Default 3.1.

	notation-connectors

	If disabled, will prevent the connector lines between the fixture body and external notation
numbers (channel, circuit, dimmer) from being draw. Default True.

	show-beams

	If enabled, a line will be printed from the centre of the fixture to it’s focus position.
A fixture must have both focusX and focusY tags for this to display. In the event that
the focus point is outside of the drawing area, beam lines will extend beyond the border
into the margins. Default False.

	beam-dasharray

	An SVG dasharray specification for the aforementioned fixture beams. Default 1, 1.

	beam-source-colour

	If enabled, the beam lines will be printed in the colour matching the source fixture’s
gel tag. Inconvertible gel names or fixtures without gels will continue to have their
beams rendered in black. Default False.

	show-focus-point

	Draws a circle at the focus position of each fixture. Similar to the beams option. These
will only work on fixtures with focus values and will print in the margins. Default False.

	focus-point-radius

	Adjust the radius of the drawn focus point circle. Measured in millimeters. Default 1.

	focus-point-source-colour

	Similar to the beam-source-colour option, if enabled, focus points will be rendered
according to the colour of the gel in the source fixture. Default False.

Title Block Format

	title-block

	What format of title block to use. Currently supported formats are None and sidebar.
None will omit the title block entirely. sidebar will draw the title block down the
full height on the right hand side of the page.

	sidebar-title-width-pc, sidebar-title-min-width, sidebar-title-max-width

	The width of the sidebar title is calculated as a percentage of the page width, defined
by sidebar-title-width-pc. Minimum and maximum widths, in millimetres can be provided
to ensure that sidebar titles remain sensible widths when changing the paper size.
Defaults 0.1, 50, 100.

	sidebar-title-padding

	The amount of space to leave inside the title block, to prevent titles and other items
rendering right against the sidebar boundaries. Measured in millimetres. Default 2.

	titles

	A list of metadata tags to include in the title section of the title block. These are
added to an HTML foreignObject element for external styling with the included stylesheet.
Only the tag values are added, headings should be added using the ::before CSS selector.
Class names given to the text paragraph will be title-meta_tag_name. Format as a
literal list of strings. Default ['company', 'production', 'venue', 'lighting_designer']

	legend-text-margin

	The space to leave between the fixture symbol in the legend and its corresponding text
label. Measured as a percentage of the overall title bar width. Default 2.

Scale Rule Settings

	show-scale-rule

	Show a scale rule in the bottom left corner of the page when enabled. Default True.

	scale-rule-major-increment, scale-rule-minor-increment

	The scale rule gives you a minor scale (drawn to the left-hand-side) and a major scale
(drawn to the right-hand-side). Both can have their increment defined independently.
This is the unscaled length to draw each increment at. Measured in metres. Defaults 1, 0.5.

	scale-rule-major-length, scale-rule-minor-length

	The overall unscaled length to draw the corresponding side of the rule to. Will only draw
complete increments, so any length defined over a whole number of increments will be
ignored. For example an increment of 1 and a length of 3.4 will result in a
rule of length 3. Measured in metres. Defaults 3, 2.

	scale-rule-thickness

	The height of scale rule to draw. This is the height excluding the border line (which is
drawn according to line-weight-light). Measured in millimetres. Default 1.

	scale-rule-padding

	The distance to leave between the scale rule and the lower left hand corner of the plot
area boundary. The same distance is left on both the x and y axis and this is measured to
the lower left hand corner of the rule itself, not any associated text. Measured in
millimetres. Default 3.

	scale-rule-label-padding

	The distance to leave between the top of the rule itself and the labels marking the
distances on the rule. Measured in millimetres. Default 0.5.

	scale-text-padding

	The distance to leave between the top of the rule itself and the associated text
labelling the scale of the plot (in the form SCALE 1:x). This will likely only require
changing if you change the marking labels font size in the stylesheet. Measured in millimetres.
Default 3.5.

	scale-rule-units

	The name to give to the units on the scale rule, as printed to the right of it.
Default metres.

Base Reference

Cue Commands

Cue About

	Usage

	Cue refs About

	Synopsis

	Show the intensities of all fixtures recorded in refs.

Cue Create

	Usage

	Cue refs Create

	Synopsis

	Create empty cues at refs.

Cue Display

	Usage

	Cue refs Display

	Synopsis

	Show a single-line summary of refs.

Cue Query

	Usage

	Cue refs Query

	Synopsis

	Show the levels of all intensities and non-intensity parameters in refs.

Cue Remove

	Usage

	Cue refs Remove

	Synopsis

	Remove refs from the show file entirely.

Cue Set

	Usage

	Cue refs k v

	Synopsis

	Set arbitrary data tag k to v in refs.

Cue SetIntens

	Usage

	Cue refs SetIntens fixs level

	Synopsis

	Set the intensity of fixs to level in refs.

File Commands

File Write

	Usage

	File Write path

	Synopsis

	Save the current working file to path.

Filter Commands

Filter Create

	Usage

	Filter refs Create k v

	Synopsis

	Create a filter at refs with requirement that arbitrary data tag k
has value v.

Filter Remove

	Usage

	Filter refs Remove

	Synopsis

	Remove refs from the show file entirely.

Fixture Commands

Fixture About

	Usage

	Fixture refs About

	Synopsis

	Show all additional data tags and DMX functions of refs.

Fixture Create

	Usage

	Fixture refs Create

	Synopsis

	Create empty fixtures at refs.

Fixture CreateFrom

	Usage

	Fixture refs CreateFrom template

	Synopsis

	Create fixtures at refs, using additional data tags and DMX functions
from template.

Fixture CompleteFrom

	Usage

	Fixture refs CompleteFrom template

	Synopsis

	For any additional data tags which exist in template but not refs,
copy the tag and value from template to ref. Also copy the entire
DMX personality if there is no personality in refs.

Fixture CopyTo

	Usage

	Fixture ref CopyTo dests

	Synopsis

	Make a copy of ref at dests.

Fixture Display

	Usage

	Fixture refs Display

	Synopsis

	Show a single-line summary of refs.

Fixture Patch

	Usage

	Fixture refs Patch universe address

	Synopsis

	Patch refs, beginning at address, in universe.

Fixture Remove

	Usage

	Fixture refs Remove

	Synopsis

	Remove refs entirely from the show file.

Fixture Set

	Usage

	Fixture refs Set k v

	Synopsis

	Set arbitrary data tag k to v in refs.

Fixture Unpatch

	Usage

	Fixture refs Unpatch

	Synopsis

	Remove all entries in all universes of refs.

Group Commands

Group About

	Usage

	Group refs About

	Synopsis

	Show the constituent fixture references of refs.

Group Append

	Usage

	Group refs Append fixs`

	Synopsis

	Add fixtures fixs to the end of refs.

Group Create

	Usage

	Group refs Create

	Synopsis

	Create empty groups at refs.

Group Display

	Usage

	Group refs Display

	Synopsis

	Show a single-line summary of refs.

Group Query

	Usage

	Group refs Query

	Synopsis

	Show a single-line summary of each fixture in refs.

Group Remove

	Usage

	Group refs Remove

	Synopsis

	Remove refs entirely from the show file.

Group Set

	Usage

	Group refs Set k v

	Synopsis

	Set arbitrary data tag k to v in refs.

Metadata Commands

Metadata Set

	Usage

	Metadata Set k v

	Synopsis

	Set the value of k to v. Omit v to delete an existing
entry under k.

Registry Commands

Registry About

	Usage

	Registry refs About

	Synopsis

	Show a table-style overview of used addresses in refs.

Registry Create

	Usage

	Registry refs Create

	Synopsis

	Create empty registries at refs.

Registry Display

	Usage

	Registry refs Display

	Synopsis

	Show a single-line summary of refs.

Registry Query

	Usage

	Registry refs Query

	Synopsis

	Show a single-line summary of every patched function in refs.

Registry Remove

	Usage

	Registry refs Remove

	Synopsis

	Remove refs entirely from the show file.

Developer Introduction

This program is badly written.

The developer documentation here is purely so I don’t forget how it works.

General Structure

A front-facing interface sends raw commands to an interpreter and receives output via a message bus.

An interpreter may be extended through modules called extensions.

All document interaction takes place in document.py.

Interface Specification

The interface of the program is the point at which commands are issued to the interpreter, and the results and
outputs of commands relayed back to the end user. There is no requirement for how the interface itself operates, or
indeed how many of the potential features it incorporates. However, it must communicate with the interpreter in a
specific way.

For code-based reference, see cli.py which is the included interface. It should be relatively easy to understand
that file with the information in this page.

Launching

The main process of the interface must be located in a function called main, which has one argument. This
argument is the initialisation globals which are passed on launch of the program. These will contain the file to load,
parsed configuration, and potentially further globals in the future.

Structure

Every interface must initialise an instance of interpreter.Interpreter, to which it must pass on construction
the working show file, a message bus object, and the configuration file.

The working show file is the deserialised JSON document which has been parsed into a Python list. It is not the
load location of the file. The configuration file will have already been parsed into a dict when the main process
was launched, so this can safely be passed straight to the interpreter instance.

You must extend the interpreter manually with any extensions you wish to use, even the base extension. If you do
not add any extensions, the interpreter will not respond to any commands. To extend the interpreter, just pass the
string of the extension name to the register_extension function of your interpreter object.

Sending Commands

Commands are sent to the interpreter by sending the raw input string to the process_command function of your
interpreter instance. There is no need to process the string in anyway before sending it. If your interface relies on
the command line to perform interface-specific functions (for example, the CLI interface uses special unused commands
to change context), then you can process the command separately.

Receiving Feedback and Output

Feedback (whether a command was successful or not) and output (data the command returns) are received through the
message bus object you passed to the interpreter instance on initialisation. This message bus object is a class
which must have two functions: post_feedback and post_output. These are functions the interpreter will use
to communicate output back to your interface.

Both of these will receive text feedback in the format described below.

Format of Text Output

As line breaks are very important in the interpretation of the data the interpreter returns, all text output is
returned as a list of lines, even if it is only one line long. Each of these lines (list items) could themselves be:

	a string

	a tuple

	a list of strings and tuples

Any tuple returned will be of the form (FORMAT, STRING). This is to flag to your interface that there is specific
formatting to be added to STRING which will enhance its legibility. For example, it could be a colour to indicate
a specefic object type or status. The actual formatting to apply will not be specified, FORMAT is simply a string
indicating the type of formatting to add. For example fixture or function. How you interpret these format
strings is entirely up to you. You may just
completely ignore them if you wish, although this could make the output more difficult for the end user to interpret.

A list of strings and tuples should be interpreted as a concatenation of the constituent strings.

Adding Object Types

Adding object types is now substantially quicker due to new streamlined universal commands.

To create a new object type:

Add an object definition to lib.constant, which will define the internal name for the object and the structure
of a blank such object in the file. Here should be defined any fields which are required for the object to work, for
example the levels field in a cue object.

Bootstrap off base commands in base. Available are create, display, remove and set. For each of these for your new
object, all you need is:

def new_object_create(self, refs):
 return self._base_create(refs, constant.NEW_OBJECT_TYPE)

And then the same for display, remove and set.

You also need to register each of these commands by adding to register_commands:

self.commands.append(RegularCommand(('NewObject', 'Create'), self.new_object_create, check_refs=False))

The check_refs=False flag is only required for the create command.

Finally, add any other specialist commands to base and define any keymaps in the config file.

Index

Creating plot background images

Plot background images must be made in pure SVG and there are several very
specific conditions which must be met for the plot to display correctly.

	The objects in the plot must be scaled such that one user unit is 1mm.

2. The (0,0) coordinate is the intersection of the plaster line and
centre line.
3. Any lines which should have USITT standard line weights have classes
applied.
4. The plot image is taken from the first group found in the SVG file, so
everything must be grouped in a container group.

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Documentation for Pylux

 		
 Introduction

 		
 Synopsis

 		
 Interface

 		
 Basic Concepts

 		
 Getting Started

 		
 Invoking

 		
 File Management

 		
 The CLI

 		
 Syntax

 		
 Using Metadata

 		
 Using Fixtures

 		
 Creating Fixtures

 		
 Displaying Fixtures

 		
 Setting Attributes

 		
 Cloning Fixtures

 		
 Assigning DMX Addresses to Fixtures

 		
 Importing Data

 		
 Generating Reports

 		
 Generating Plots

 		
 Customising the Plot

 		
 Page Layout

 		
 Drawing Options

 		
 Fixture Icon Options

 		
 Additional Component Settings

 		
 Title Block Format

 		
 Scale Rule Settings

 		
 Base Reference

 		
 Cue Commands

 		
 Cue About

 		
 Cue Create

 		
 Cue Display

 		
 Cue Query

 		
 Cue Remove

 		
 Cue Set

 		
 Cue SetIntens

 		
 File Commands

 		
 File Write

 		
 Filter Commands

 		
 Filter Create

 		
 Filter Remove

 		
 Fixture Commands

 		
 Fixture About

 		
 Fixture Create

 		
 Fixture CreateFrom

 		
 Fixture CompleteFrom

 		
 Fixture CopyTo

 		
 Fixture Display

 		
 Fixture Patch

 		
 Fixture Remove

 		
 Fixture Set

 		
 Fixture Unpatch

 		
 Group Commands

 		
 Group About

 		
 Group Append

 		
 Group Create

 		
 Group Display

 		
 Group Query

 		
 Group Remove

 		
 Group Set

 		
 Metadata Commands

 		
 Metadata Set

 		
 Registry Commands

 		
 Registry About

 		
 Registry Create

 		
 Registry Display

 		
 Registry Query

 		
 Registry Remove

 		
 Developer Introduction

 		
 General Structure

 		
 Interface Specification

 		
 Launching

 		
 Structure

 		
 Sending Commands

 		
 Receiving Feedback and Output

 		
 Format of Text Output

 		
 Adding Object Types

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

